akadia

Information Technology

Advanced Queuing AQ, Part |
- PL/SQL and Oracle's Native AQ
for Java

René Steiner, Akadia AG

Author: René Steiner
Copyright © 2001, Akadia AG, all rights reserved

Akadia AG

Information Technology
Arvenweg 4

CH-3604 Thun

Phone 033 335 86 20
Fax 033 33586 25
E-Mail info@akadia.com

Web www.akadia.com
Oracle introduced powerful gueuing mechanisms where messages can be

Advanced Queuing AQ, Part | - PL/SQL and Oracle's Native AQ for Java

Akadia AG

exchanged between different programs. They
called it Advanced Queuing AQ. Exchanging
messages and communicating between
different application modules is a key
functionally becoming important as soon as we
leave the database servers' SQL and PL/SQL
programming domain. If we have to do different
jobs simultaneously, for instance to
communicate with external systems and
evaluate complex queries at the same time, it
might be a design decision to uncouple
"request for service" and "supply for service". In
one case an application module deals with all
external systems and requests a certain query
by posting a message on a queue. In the other
case an application gets the message,
performs the query and supplies the result back
on the queue in between.

While using Oracle Advanced Queuing we do
not have to install additional middle-ware
dealing with inter-process communication and
transaction monitoring. We can directly use an
existing and well-known database and can
benefit from given functionalities like online
backup or transaction processing. Alternatively
other simple and non queue based messaging
techniques can be used like the Java RMI,
which is limited to Java. Or more complex
approaches like CORBA, where the complexity
lies more in design and conceptual decisions.

This is Part | of two articles that covers the

following topics:

e How to create and administrate queues in
the database

e Using a queue with PL/SQL in a Point-to-
Point Model

e Using Oracle's JPublisher to generate
Java classes representing database types

e Dequeue a Point-to-Point message with
Oracle's Native AQ Interface for Java
similar to the PL/SQL dequeue sample

And Part Il will cover:

e Introduction to Java Message Service
JMS

e Publish messages and subscribe to topics
with Oracle's JMS Interface to AQ using
multi-consumer queues

e Some words about Persistence

e Oracle Message Broker OMB outlook

There are only sample code snippets shown for
Java in both articles to avoid going beyond the
scope. They include all necessary statements
to understand AQ. You may download full
running samples from www.akadia.com

Here complete samples are available, showing
all the required statements, environment
variables, imports, JAR files, error processing's
along with Windows batch files to compile and
run etc.

What we want to do - the Two Models

In a simple system we could think about two
applications that like to use one or more
queues together. This approach is called the
Point-to-Point Model.:

Application Oracle Application
RDBMS

Enqueue, Send Enqueue, Send

/ Dequeue / Dequeue
Queues

The process to put messages on a queue is
called enqueue or send whereas the opposite
is called dequeue. There may be more than two
consumer applications but a single message
can only be dequeued once. Consumers may
browse the queue without dequeuing
messages.

In a more advanced system we may like to
have different applications that publish
messages and others that subscribe to certain
queues from where they like to consume
messages. There is no more strict connection
between applications. This is called the
Publish-Subscribe Model and is covered by
Part Il of these articles.

Queue Creation

For database queue creation we should have
an AQ administrator user with the required
privileges. It can be used as object owner too.
All created queues and message object types
will belong to this administrator. Afterwards we
can create as many queue users as we like or
grant the required privileges to existing users
who want to access the queues. To avoid
maintaining privileges for every single user, we

August 2001

Page 2 of 6

Advanced Queuing AQ, Part | - PL/SQL and Oracle's Native AQ for Java

Akadia AG

will create two roles in this sample. One for the
AQ administrator and another for all AQ users.

In these samples the administrator role is
called "my_aq_adm_role" and the
corresponding user "agadm". We grant
Oracle's AQ role "aq_administrator_role" to our
administrator role.

CREATE ROLE my_aq_adm_role;
GRANT CONNECT, RESOURCE,
aq_administrator_role

TO my_aq_adm_role;

The user role is called "my_aq_user_role" and
the corresponding sample user "aquser". Here
we grant Oracle's AQ role "aq_user_role" and
additional system privileges required for basic
operations.

CREATE ROLE my_aq_user_role;
GRANT CREATE SESSION, aq_user_role
TO my_aq_user_role;
EXEC DBMS_AQADM.
GRANT_SYSTEM_PRIVILEGE(
privilege => 'ENQUEUE_ANY",
grantee =>'my_aq_user_role',
admin_option => FALSE);
EXEC DBMS_AQADM.
GRANT_SYSTEM_PRIVILEGE(
privilege => 'DEQUEUE_ANY",
grantee =>'my_aq_user_role',
admin_option => FALSE);
Now we're ready to create the AQ
administration user:

CREATE USER agadm
IDENTIFIED BY agadm
DEFAULT TABLESPACE tab
TEMPORARY TABLESPACE temp;
GRANT my_aq_adm_role TO agadm,;

And the queue user for our samples:

CREATE USER aquser
IDENTIFIED BY aquser
DEFAULT TABLESPACE tab
TEMPORARY TABLESPACE temp;
GRANT my_aq_user_role TO aquser,

For our first queue we will use an object type
instead of a base data type like NUMBER or
VARCHAR2 as payload. The payload is the
data type and structure used for every

message. To use an object type is more
realistic than sending single numbers or strings
around but a bit more complicated. In a
message we might have an identification
number, a title and a message text or content.

Its time now to change to the AQ
administration user where the previous
operations could be performed by any DBA.

CONNECT agadm/agadm;

CREATE TYPE queue_message_type
AS OBJECT (
no NUMBER,
titte VARCHAR2(30),
text VARCHAR2(2000));
/
GRANT EXECUTE ON queue_message_type
TO my_aq_user_role;

Let's create a queue called "message_queue"
with a corresponding queue table
"queue_message_table". We start the queue
so that it can be used from now on.

EXEC DBMS_AQADM.
CREATE_QUEUE_TABLE (
gueue_table =>'queue_message _table',
queue_payload_type =>
agadm.queue_message_type');
EXEC DBMS_AQADM.CREATE_QUEUE (
gqueue_name => 'message_queue’,
queue_table =>'queue_message_table');
EXEC DBMS_AQADM.START_QUEUE (
queue_name => 'message_queue');

Now we have a complete queue that is ready to
use. All the administrative PL/SQL operations
shown are available in Java too. However it's a
handy idea to do these steps in a SQL shell.

Using a Queue with PL/SQL in a Point-to-
Point Model

To work with queues we connect with our AQ
sample user:

CONNECT aquser/aquser;

Now we like to enqueue a message. We have
to name the queue, give some default options
and pass our message "my_message" as
payload, which is made by our own defined

August 2001

Page 3 of 6

Advanced Queuing AQ, Part | - PL/SQL and Oracle's Native AQ for Java

Akadia AG

message. Remember, we live in a transactional
environment. We must issue a final COMMIT.

CONNECT aquser/aquser;
DECLARE
queue_options
DBMS_AQ.ENQUEUE_OPTIONS_T,;
message_properties DBMS_AQ.
MESSAGE_PROPERTIES_T,;
message_id RAW(16);
my_message agadm.queue_message_type;
BEGIN
my_message := agadm.
queue_message_type(
i
"This is a sample message',
"This message has been posted on' ||
TO_CHAR(SYSDATE,
'DD.MM.YYYY HH24:MI:SS"));
DBMS_AQ.ENQUEUE(
queue_name =>
'‘agadm.message_queue',
enqueue_options => queue_options,
message_properties =>
message_properties,
payload => my_message,
msgid => message _id);
COMMIT;
END;
/

We can dequeue the recently enqueued
message. The DBMS_AQ.DEQUEUE
statement waits until there is a message to
dequeue. The shown code looks very similar to
the one above.

SET SERVEROUTPUT ON;
DECLARE
queue_options DBMS_AQ.
DEQUEUE_OPTIONS_T;
message_properties DBMS_AQ.
MESSAGE_PROPERTIES T,;
message_id RAW(2000);
my_message agadm.queue_message_type;
BEGIN
DBMS_AQ.DEQUEUE(
queue_name =>
'‘agadm.message_queue’,
dequeue_options => queue_options,
message_properties =>
message_properties,
payload => my_message,
msgid => message_id);
COMMIT;

DBMS_OUTPUT.PUT_LINE(
'Dequeued no: ' || my_message.no);
DBMS_OUTPUT.PUT_LINE(
'Dequeued title: ' || my_message.title);
DBMS_OUTPUT.PUT_LINE(
'Dequeued text: ' || my_message.text);
END;
/

The PL/SQL samples were easy and
straightforward. Not a lot to do. Every kind of
application and programming environment
could use it like this, assuming they are able to
connect to the database and execute PL/SQL
stored procedures. However, it is more
convenient and is better practise to use the
programming languages' own way to deal with
messages. That's the point where we should
have a look what Java offers...

Introducing the Java Samples

While using Java, it's not only the different
programming syntax we use but also the way
we design programs. We leave the procedural
area and enter into the object oriented world. In
these samples we use an abstract base class
AQApplication to hide all the steps we must
perform before we are able to start working with
queues.

AQApplication
Dequeue with
Native AQ Interface
AQDequeue " oad:r)mt_to-Pomt

This UML diagram shows our sample class
AQDequeue derived from AQApplication. We
will focus down to those statements we must
know about, in order to work with queues. It's
not necessarily required to understand the
whole object oriented concept.

Using JPublisher to Prepare an Oracle
Object Type for Java

When we created our queue we created also
an Oracle object type to be used for messages.
Because we cannot use Oracle data types in
Java we must have a Java class to fill the
dequeued message in. JPublisher can do this
job for us. It connects to the database and

August 2001

Page 4 of 6

Advanced Queuing AQ, Part | - PL/SQL and Oracle's Native AQ for Java

Akadia AG

creates a Java class matching the specified
Oracle object type.

set CLASSPATH=
D:\Oracle\Product\8.1.7\jdbc\lib\classes12.zip;
D:\Oracle\Product\8.1.7\sqlj\lib\translator.zip;
D:\Oracle\Product\8.1.7\sqlj\lib\runtime.zip

jpub -user=agadm/agadm
-sqI=QUEUE_MESSAGE_TYPE
-usertypes=oracle
-methods=false

-user=agadm/agadm
Object owner and password to which the to be
translated objects belong.

-sqI=QUEUE_MESSAGE_TYPE

One or more object types and packages that
you want JPublisher to translate. Use commas
for separation.

-usertypes=oracle
The oracle mapping maps Oracle datatypes to
their corresponding Java classes.

-methods=false

If true, JPublisher generates SQLJ classes for
PL/SQL packages and wrapper methods for
methods in packages and object types. SQLJ
wraps static SQL operations in Java code. We
do not use SQLJ here, thus we pass false.

JPublisher connects to the database and
creates a Java class
QUEUE_MESSAGE_TYPE for us. We can use
this class now as a Java data type to receive
messages posted by another Java or PL/SQL
client.

Dequeue a Point-to-Point Message with
Oracle's Native AQ Interface for Java

We use the previously shown PL/SQL sample
and replace the dequeue functionality by Java
to show the similarities. Additionally it can be
used to show message exchanging between
PL/SQL and Java. Enqueuing in Java is very
similar again to dequeuing and is therefore not
shown here.

Before we can start using Oracle's Native AQ
Interface for Java we must connect to the
database via JDBC. As a connection string we
use a host name for HOST and an Oracle

database SID for SID. Between these two
values the listener port address must be
specified, e.g. 1521.

Class.forName(
"oracle.jdbc.driver.OracleDriver");

aqg.connection = DriverManager.getConnection(
"jdbc:oracle:thin:@HOST:1521:SID,

"aquser", "aquser");
ag.connection.setAutoCommit(false);

Afterwards we create a so-called AQ session
passing the AQ connection:

Class.forName("oracle.AQ.AQOracleDriver");
aq.session = AQDriverManager.
createAQSession(aq.connection);

Now we're ready to get a reference to the
queue we like to use. To do so, we pass the
queue owner and the queue name:

AQQueue queue = ag.session.getQueue(
"agadm", "MESSAGE_QUEUE");

For dequeuing we create default options and
pass them along with an instance of
JPublisher's created message data type
QUEUE_MESSAGE_TYPE.

AQDequeueOption dequeueOption
= new AQDequeueOption();

System.out.printin(
"Waiting for message to dequeue...");
AQMessage message =
((AQOracleQueue)queue).dequeue(
dequeueOption,
QUEUE_MESSAGE_TYPE.getFactory());

To get the message content we convert the raw
payload into our message type.

AQODbjectPayload payload =
message.getObjectPayload();
QUEUE_MESSAGE_TYPE messageData =
(QUEUE_MESSAGE_TYPE) payload.
getPayloadData();

ag.connection.commit();
System.out.printin("Dequeued no: " +

messageData.getNo());
System.out.printin("Dequeued title: " +

August 2001

Page 5 of 6

Advanced Queuing AQ, Part | - PL/SQL and Oracle's Native AQ for Java

Akadia AG

messageData.getTitle());
System.out.printin("Dequeued text: " +
messageData.getText());

Like in PL/SQL, we need a final COMMIT.

Conclusion

Oracle Advanced Queuing is a powerful and
rather simple way of working with queues. The
libraries available for Java offer a smart way to
enqueue and dequeue messages without too
much programming overhead. In more
sophisticated projects Advanced Queuing's
whole functionality can be taken into account.
Oracle's Advanced Queuing developer's guide
exceeds thousand pages. This might be seen
as an indication that in advanced projects a
reasonable amount of time is required to
understand the different concepts and
possibilities. This should not be seen as a
disadvantage for Oracle's Advanced Queuing,
the same is true for other similar
communication or queuing technologies.

Only essential issues and aspects have been
covered by this article. Part Il of these articles
will cover somewhat more sophisticated
concepts such as publishing and subscribing a
message with Oracle's Java Message Service
JMS Interface to AQ.

Links and Documents

Samples shown in this article
www.akadia.com

Oracle Documentation
Application Developer's Guide
- Advanced Queuing
Supplied PL/SQL Packages Reference
Supplied Java Packages Reference

Contact

René Steiner
E-Mail rene.steiner@akadia.com

Akadia AG

Information Technology
Arvenweg 4

CH-3604 Thun

Phone 033 335 86 20
Fax 033 335 86 25
E-Mail info@akadia.com

Web www.akadia.com

August 2001

Page 6 of 6

