akadia

Information Technology

Advanced Queuing AQ, Part Il
- Oracle's JMS Interface to AQ

René Steiner, Akadia AG

Author: René Steiner
Copyright © 2001, Akadia AG, all rights reserved

Akadia AG

Information Technology
Arvenweg 4

CH-3604 Thun

Phone 033 335 86 20
Fax 033 33586 25
E-Mail info@akadia.com
Web www.akadia.com

Advanced Queuing AQ, Part Il - Oracle's JMS Interface to AQ

Akadia AG

Oracle Advanced Queuing AQ is a powerful
queuing mechanism for message exchanging
between different applications. Part | of these
articles introduced AQ and explained how to
create queues in the database, use PL/SQL in
a Point-to-Point Model, JPublisher and Oracle's
Native AQ Interface for Java.

Part Il now covers:

e Introduction to Java Message Service
JMS

e Publish messages and subscribe to topics
with Oracle's JMS Interface to AQ using
multi-consumer queues

e Some words about Persistence

e Oracle Message Broker OMB outlook

As in the Part | of these articles there are only
sample code snippets shown here. They
include all necessary statements to understand
AQ. Download full running samples and batch
files from www.akadia.com

Here complete samples are available, showing
all the required statements, environment
variables, imports, JAR files, error processing's
along with Windows batch files to compile and
run etc.

What we want to do - the Two Models

Part | showed a simple system with two
applications that use one or more queues
together. This approach has been called the
Point-to-Point Model.

However, in a more sophisticated system we
may like to have different applications that
publish messages and others that subscribe to
certain queues from where they like to
consume messages. The Publish-Subscribe
Model uses multi-consumer queues:

Oracle Ap%léc:r?ton,
Application RDBMS
- Subscribe
/ Receive

Puh

Queues,
Topics

\Subscribe
/ Receive

Publis&
/ Subscribe

/ Receive

Application

Application

Publisher applications propagate messages to
queues which are called topics here. These
messages can be either addressed for specific
applications or they will be received by all
destinations. Applications receiving messages
are also called agents. We talk about
broadcast if the message can be consumed by
all applications and about multicast if a
subscription is required for consummation. To
explain broadcast and multicast more clearly
the following parallel cases are often used:
Broadcast is similar to radio and TV
broadcasting received by everybody. Multicast
can be seen like a newspaper where you need
a subscription. Many people have a
subscription but not everybody.

The Java Message Service JMS

Different enterprise messaging vendors lead by
Sun Microsystems, Inc. defined a common API
for reliable and flexible message exchange in
distributed systems throughout an enterprise.
Oracle is one of the companies that
implemented JMS and decided to do it by their
own Advanced Queuing feature. Other
companies implement JMS using another
technology. The underlying technology remains
exchangeable and developers do not need to
learn always proprietary messaging API's.

We will use Oracle's JMS Interface to AQ that
implements an interface for Advanced Queuing.

Other Words for Same Things

If we talk about queues while using Advanced
Queuing, we call the same Topics if we are in
the world of JMS. The same is true for enqueue
and dequeue. They're called Publish and
Receive in JMS. Additionally applications are
often called Agents in JMS.

Queue Creation

Required database users creation and granting
of needed privileges has been described in
Part | of these articles. If you missed it please
see www.akadia.com for samples and
explanations.

We created an AQ administration user "agadm"
and a AQ application user called "aquser" for
the samples.

August 2001

Page 2 of 6

Advanced Queuing AQ, Part Il - Oracle's JMS Interface to AQ

Akadia AG

A queue table "multi_message table" with a
special object type
AQ$_JMS_OBJECT_MESSAGE will be
created now. This object type is a reference
only and does not yet define the message
structure. It gives us the freedom to define later
the payload of our messages we like to
transfer. The payload is the data type and
structure used for every message.

Creating and starting the queue "multi_queue"
works in the same way as for the Point-to-Point
connection, except that the parameter
"multiple_consumers" is set to true.

We use the AQ administration user "agadm":
CONNECT agadm/agadm;

EXEC DBMS_AQADM.
CREATE_QUEUE_TABLE (
queue_table => 'multi_message_table',
queue_payload_type =>

'SYS.AQ$_JMS_OBJECT_MESSAGE!,
multiple_consumers => TRUE);

EXEC DBMS_AQADM.CREATE_QUEUE (
queue_name => 'multi_queue',
queue_table => 'multi_message_table');

EXEC DBMS_AQADM.START_QUEUE (
queue_name => 'multi_queue");

Introducing the Java Samples

When using Java we leave the procedural area
and step into the object oriented world. The
abstract base class AQApplication offers all
required steps we must perform before we are
able to start working with queues.

AQApplication

AN

AQJmsPublisher AQJmsSubscriber

The UML diagram shows our sample classes
AQJmsPublisher and AQJmsSubscriber
derived from AQApplication. They will be used
to act as publishers and subscribers.

AQJmsPublisher AQJmsSubscriber

AQJmsMultiQueueltem

Both classes instantiate the payload class
AQJmsMultiQueueltem as message data type.

We will focus down to those statements we
must know about, in order to work with queues.
It's not necessarily required to understand the
whole object oriented concept.

Create Class for Message Content

In our sample application the following class is
used as payload for message content. We are
free in choosing the member variables and
methods. However, the class must implement
the Serializable interface.

AQJmsMultiQueueltem

AV

<<interface>>
Serializable

The Serializable interface in the java.io library
is used for object serialisation. Serialisation
means, exchanging objects between programs
on the same machine and between remote
computers. The objects are transferred via
streams and networks conserving their current
states and data. They are restored by
receivers, become alive again and continue to
work.

public class AQJmsMultiQueueltem
implements Serializable {

private int _no;
private String _title;
private String _text;

public AQIJmsMultiQueueltem(
int no, String title, String text) {

~NoO =no;
_title = title;
_text = text;

}

August 2001

Page 3 of 6

Advanced Queuing AQ, Part Il - Oracle's JMS Interface to AQ

Akadia AG

public int getNo() { return _no; }
public String getTitle() { return _title; }
public String getText() { return _text; }

}

Publish a Message with Oracle's JMS
Interface to AQ

To establish a connection to a topic we need to
create a connection factory using JDBC. As
connection string we use a host name for
HOST and an Oracle database SID for SID.
Between these two values the listener port
address must be specified, e.g. 1521. We use
a Properties object to pass the AQ user name
and password.

Properties info = new Properties();
info.put("aquser", "aquser");
TopicConnectionFactory
topicConnectionFactory = AQjmsFactory.
getTopicConnectionFactory(
"jdbc:oracle:thin:@HOST:1521:SID",
info);

With the factory we can get now two things: An
AQ topic connection and an AQ topic session.
We pass true for a transactional session and
request client acknowledges. This simply
means that we like a transactional behaviour
and that clients perform ROLLBACKs and
COMMITs.

ag.connection = topicConnectionFactory.
createTopicConnection("aquser", "aquser");

ag.session = ag.connection.
createTopicSession(true,

Session.CLIENT_ACKNOWLEDGE);

We can start the connection and create a
publisher afterwards. We could pass a topic to
the publisher at the place where we pass null
now. But without specifying a topic here we can
work with more than one topic using the same
publisher. Afterwards we get a reference to the
topic we like to use now. The topic is owned by
"agadm" and is called "MULTI_QUEUE".

ag.connection.start();

TopicPublisher publisher = aqg.session.
createPublisher(null);

Topic topic = ((AQjmsSession) ag.session).
getTopic("agadm", "MULTI_QUEUE");

Lets make an instance of the recently created
payload class AQJmsMultiQueueltem. This
object is converted into a JMS object message.

AQJmsMultiQueueltem messageData =
new AQJmsMultiQueueltem(
0,
"Published message title",
"This is the message text");
ObjectMessage objectMessage =
ag.session.createObjectMessage(
messageData);

We don't want to send and broadcast this
message to everybody. Instead, we prepare a
list of agents for multicasting. These recipients
are identified by subscription names, e.g.
"SUBSCRIPTION1" and "SUBSCRIPTION2".
The null parameter could be used to pass an
address identifying agents on remote
machines.

AQjmsAgent[] recipientList =

new AQjmsAgent[2];
recipientList[0] =

new AQjmsAgent("SUBSCRIPTION1", null);
recipientList[1] =

new AQjmsAgent("SUBSCRIPTION2", null);

Finally we publish the message to the topic
along with the recipient list, commit the whole
thing and close the session and connection.

((AQjmsTopicPublisher) publisher).
publish(topic, objectMessage, recipientList);

ag.session.commit();
ag.session.close();
ag.connection.close();

Subscribe to a Topic and Receive a
Message

We can create a subscriber agent on a topic
and call it for example "SUBSCRIPTION1". The
null parameter could be replaced by a message
selector that filters some of the received
messages. Here we like to get all.

TopicReceiver subscriber =
((AQjmsSession) aqg.session).
createTopicReceiver(
topic,
"SUBSCRIPTION1",

August 2001

Page 4 of 6

Advanced Queuing AQ, Part Il - Oracle's JMS Interface to AQ

Akadia AG

null);

When calling the receive method the program
waits until a message appears on the topic.
After 60 seconds it runs into a time-out, the
program continues and the "objectMessage"
stays null, if no message appears. The time-out
is specified in milliseconds.

System.out.printin(
"Waiting 60 seconds for message");
ObjectMessage objectMessage =
(ObjectMessage) subscriber.receive(60000);

We read back our payload stored in the object
message.

if (objectMessage != null) {

AQJmsMultiQueueltem messageData =
(AQJmsMultiQueueltem)
objectMessage.getObiject();

System.out.printin("Received no: " +
messageData.getNo());
System.out.printin("Received title: " +
messageData.getTitle());
System.out.printin("Received text: " +
messageData.getText());
}

Again we need a final commit and we close the
session and connection.

ag.session.commit();
ag.session.close();
ag.connection.close();

Some Words About Persistence

The queues and all messages inside are
persistent. Persistency means that sending and
receiving messages is a transaction controlled
operation. The familiar statements ROLLBACK
and COMMIT can do this. Messages survive
even system crashes. We may use our
samples to send a message, shutdown the
database, restart it and receive the message.

Oracle Message Broker OMB Outlook

While working with Advanced Queuing and
JMS we often come across the Oracle
Message Broker OMB in literature and in

browsing the web. The question arises if we
need OMB and for what purpose it is.

The Oracle Message Broker provides a
platform-independent messaging mechanism.
The complexity of different underlying
messaging technologies should be hidden. The
Java Message Service JMS is the foundation of
the message broker. Many different drivers
from several vendors are supported. Advanced
Queuing is one of them. In these articles we
use directly Native AQ and JMS without any
message broker. If we need to connect many
different platforms the complexity could be
reduced by using a common interface and
broker mechanism. To describe OMB is not
part of this article. See for instance "Oracle
Message Broker Administration Guide" for
details.

Conclusion and Prospects

Oracle Advanced Queuing is a rather simple
but powerful way to work with messages and
PL/SQL, Native AQ or the Java Message
Service JMS. Both articles Parts | and Il speak
only about the main functionality and the
essential operations that are required to
produce functioning programs. There are a lot
more features available such as message
prioritisation, message grouping, rule-based
subscription, message scheduling, message
histories and many more...

In distributed systems the Java Message
Service JMS can be a good decision for a
platform independent messaging
implementation. On different connected
platforms, several JMS implementations can be
used and can even be replaced if necessary.
Using Oracle's JMS Interface to AQ on nodes
where an Oracle database server is already
installed can be very efficient and cost
effective. No third-party messaging solution
must be evaluated and because we are familiar
with Oracle less learning effort is required.

Links and Documents

Samples shown in this article
www.akadia.com

Java Message Service JMS
java.sun.com/products/jms

Oracle Documentation

August 2001

Page 5 of 6

Advanced Queuing AQ, Part Il - Oracle's JMS Interface to AQ Akadia AG

Application Developer's Guide

- Advanced Queuing
Supplied PL/SQL Packages Reference
Supplied Java Packages Reference

Contact

René Steiner
E-Mail rene.steiner@akadia.com

Akadia AG

Information Technology
Arvenweg 4

CH-3604 Thun

Phone 033 335 86 20
Fax 033 335 86 25
E-Mail info@akadia.com
Web www.akadia.com

August 2001 Page 6 of 6

